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INTRODUCTION 

It has long been realized that speech contains certain salient ele­

ments -which enable the listening ear and the associated auditory process­

es to extract semantic and other data which leads to the subjective 

hearing experience. In addition, speech contains a great deal of irrev-

alent structure which the hearing sense is able to delineate and to 

discard. This implies that in the handling of the speech signal in 

communication systems, circuit and system components should be designed 

to preserve the information bearing elements while discarding the super­

fluous features. (9). 

The superfluous nature of a signal, that is the redundant and 

descriptive information above and beyond that necessary for compre­

hension, is frequently a function of the anatomy of the source. Infor­

mation can be represented in a number of different ways. The particu­

lar method chosen will introduce additional form or structure which 

characterizes the representation. In this light speech can be con­

sidered as a modulated carrier in which the sequence of vocal cord 

pulses is modulated by the slowly varying vocal cavities. However, 

the structure concerning the source of signal generally provides little 

protection against noise during transmission. For this reason, in 

communication systems predetermined structure is often inserted in a 

signal so that it can be transmitted intact through a noisy channel. 

Familiar examples are frequency modulation and the various pulse modu­

lation systems. The elimination of the structure peculiar to the 
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source does not greatly increase the noise susceptibility of the 

signal. (9). 

Efficient transmission of the signal requires the structure 

peculiar to the source be removed and a noise-resistant structure 

inserted. This process results in an over-all economy of channel 

capacity required to transmit the message. Studies of noise-resistant 

structures have resulted in noise-resistant codes -which insert these 

structures into the signals. Such codes usually assume that each 

elementary signal or pulse is of equal importance, and no account is 

taken of the source structure. This approach is justified if all of 

the superfluous source structure has been removed prior to the appli­

cation of the noise-resistant code. 

The function of removing the source structure is concerned with 

both the message signals and their source. In the case of the speech 

signal the origin of the source structure can be considered as the 

acoustical cavity formed by the mouth and the throat. This cavity 

is a multiply resonant system whose poles or resonances are functions 

of its dimensions. In the production of speech, the shape of this 

cavity is varied relatively slowly by gestures of the tongue and jaw, 

thereby changing the resonances. During the production of vowel 

sounds, the cavity is excited by a series of nearly-periodic pulses 

generated by the vocal cords. These pulses evoke a repeated acoustic 

transient which comprises the sound wave. Sounds excited in this way 

are called voiced. The positions of the poles of the cavity, often 

referred to as formant frequencies, are different for the various 

vowel sounds and for the same vowel sound, are different for various 
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speakers. In the case of consonants, excitation is provided "by air 

passing turbulently through constrictions usually located toward the 

front of the vocal tract. Cavities both in front and behind the source 

tend to affect the quality or phonetic value of this "unvoiced" sound. 

The nature of the source results in a broad energy distribution with 

significant contributions as high as 5 - 8 kilocycles per second. 

The nature of the attack and decay of such sounds is also important. 

Some few sounds fall between these two classifications, voiced and 

unvoiced. Thus speech production can be thought of as a low-frequency 

modulation of either a pulse or noise carrier wave. (9). 

Historically, most attempts of characterization of speech have 

been predicated upon a fixed shape for the vocal tract although in 

connected speech the changes in the shape of the tract occur rela­

tively slowly compared to the frequency content of the excitation. 

Speech production can then be assumed to be a quasi-steady state 

process. This assumption permits the time variations of the tract 

to be described rather accurately as a succession of steady states. 

This realization has led to a number of methods for characterizing 

speech by means of a few slowly varying parameters. The three most 

investigated and reported mathematical models are : 

1. Positions of vocal tract poles as a function of time 

along with pitch frequency as function of the same 

variable. 

2. Time varying or "short-time" spectrum or sound 

spectrogram. 
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3. Short-time autocorrelation function. (9). 

There are very extensive applications for equipment -which can auto­

matically extract the intelligence from speech. The application to 

narrow hand transmission is the most fundamental and general. A 

large reduction in channel capacity is possible when only the infor­

mation bearing structure is to be transmitted. (33). 

It was reported early that the formant frequencies carry an 

important part of the information required for the identification 

of speech sounds. (33). Flanagan and others have reported extensively 

on formant frequencies and their variation among speakers. (15, 16, 

17, 18, 19, 33, 41). It has been recognized that formant transitions 

also contain cues to recognition of the speech elements. (30, 35, 

40). Harris has found that speech formed from building blocks, with 

one block for each vowel and each consonant, is not only unnatural but 

almost unintelligible because the influences between adjacent speech 

sounds is missing. (29). Flanagan and House have reported a formant-

coding speech compression system which utilizes the following informa­

tion: frequencies of the three formants, amplitudes of voicing and 

of friction, fundamental vocal frequency, and frequency of the spectral 

maximum of the fricative excitation. (20). An automatic recognizer 

of spoken digits which essentially breaks the sound into two formant 

frequencies and compares these against stored patterns has been 

reported by Davis and others. (10). 

The sound spectrogram, developed at the Bell Telephone 

Laboratories, has also been a useful method of characterizing speech. 
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The spectrogram essentially displays the distribution of average 

power in various speech sounds as a function of frequency. The 

signal is divided into bands and the square of the amplitude in each 

band over a measured time interval is recorded, (l, 37, 46). It is 

possible for a trained person to read the sound spectrogram almost 

as easily as a phonetic transcription of the utterance. (9). In 

studies conducted to determine in what factors the information is 

contained, it was observed that a large number of phonemes are 

intimately associated with rapid changes in the spectral content 

of the sound. The observed fact that steady sounds tend to lose 

their meaning is indicative that changes in the spectrum are important. 

Therefore Kock and Miller have proposed dynamic spectrograms which 

involve the differentation of the time-amplitude pattern for different 

points in the spectrum. (54). 

The information structure of a sound spectrogram has been used 

in several different ways. In the "Vocoder" spectral analysis is 

used to compress the voice signals. In this device each of a number 

of filters is used to produce a signal corresponding to the energy 

within a narrow band of frequencies. The output of the filters then 

indicates the energy distribution of the sound as a function of time. 

This signal is transmitted and reconstructed although with an inherent 

loss of naturalness at the receiver. (8, 9, 11, 25, 31, 37, 49). 

The energy distribution as a function of time has also been used to 

attempt automatic recognition of sounds. In this case the derived 

distribution function is compared with stored patterns and matched 
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to the nearest of these. The stored patterns are energy spectra of 

either phonemes or complete words. Successes have been achieved 

using this technique, notably with "Audrey" of the Bell Telephone 

Laboratories, for the speech of a single speaker. However, less 

success has been obtained for several speakers unless adjustment 

of the equipment for each new scurce is made. (8, 12, 13, 14, 25, 

26, 44). Some work has been done in utilizing a digital computer 

to analyze the real-time spectral data and to solve the recognition 

problem by using correlation techniques. (22, 23, 24). 

Various other methods have been used to try to characterize 

speech. These included amplitude-dichotomization, time-quantization 

as reported by Licklider (36) and short-term autocorrelation analy­

sis as reported by Biddulph (2) and Davenport (7). 

It has been noted that investigators recognized that there is 

a slow frequency modulation that occurs in speech and that this 

modulation occurs at syllabic rates which are limited to a maximum 

value of about 15 cps. The importance of this variation to the 

intelligence contained in the sound is evident in the work of 

Peterson (41), Kork and Miller (34), and Harris (29). 

The purpose of the investigation reported here was to determine 

what information structure was present in the very low frequency 

characteristics of speech. The band of frequencies from 0-15 cycles 

per second must contain this structure because muscle control is 

limited to this syllabic rate. Therefore, it was proposed to study 

the amplitude and frequency characteristic of a speech signal within 
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this range of frequencies. A very simple vocabulary of the ten 

spoken digits, zero to nine, vas used throughout the investigation. 
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METHOD OF APPROACH 

The problem as outlined in the introduction was essentially to 

determine what information structure exists in the band of frequencies 

from 0-15 cycles per second for speech. Because the body is not 

capable of physical change or motion at rates greater than about 15 

cycles per second, the upper limit of the frequency band was fixed 

by this consideration. A pair of signals was derived for each spoken 

word, in this case one of the ten digits. One of the signals is a 

combination of components of the amplitude envelope. The other is 

composed of components of the low frequency modulation. In both 

signals the component frequencies are limited to the band of 0-15 

cycles per second. These two signals are an analog representation 

of the spoken digit. 

A digital representation of the analog signals was obtained by 

sampling the signals at uniform intervals of time. Actually this 

task was performed by hand although commercial equipment is available 

which will perform this function. The digital approximations to the 

signals were then used to determine and define the information 

structure in the digit characterizations. The Cyclone digital com­

puter was used to aid in the evaluation of the information content of 

the derived signals. 

Correlation studies with the digital computer appeared to lead 

to a promising model for the comprehension process for the simple 

vocabulary. Initial efforts were directed to grouping or classifying 
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the signals from a single speaker. Later the invariance of these 

signals among speakers was checked. The structure of the time rate 

of change of the frequency modulation signal vas examined and found 

to contain a great deal of information or intelligence. This finding 

suggested a technique •which vas used to duplicate the results of an 

experiment reported by the Bell Telephone Laboratories staff (42) 

but conducted in an entirely different way. Attempts were made to 

determine how much of the complete sound spectrum contained the 

information represented by these characterizations. The selected 

frequency band was also investigated to determine if the full band 

from 0-15 cycles per second was necessary for the information 

structure found. 
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EQUIPMENT 

A "block diagram of the measuring equipment used to obtain the 

amplitude and frequency signals for a given spoken digit is shown 

in Figure 1. The Cyclone digital computer and its peripheral equip­

ment make up the rest of the complete system, with a human link 

performing the necessary matching functions "between the analog and 

digital systems. An Electro-voice, model 647, dynamic microphone was 

used at the input of the system of Figure 1. The audio amplifier 

shown in the diagram was a Knight 30 watt, high fidelity amplifier, 

model KN-530, modified to operate into the next blocks of the system. 

The amplifier was operated with the rolloff response eliminated and 

the extended high frequency boosted with the treble control. The 

bass control has essentially no effect on the system response. 

The complete circuits contained in the next blocks of the system, 

those which actually form the amplitude and frequency characterization 

signals, are shown in Figure 2. An output from the audio amplifier 

is taken from the plates of the output driver stages to form the 

amplitude signal. This output first is rectified in the bridge diode 

rectifier and then filtered. An output representing the very low 

frequency voltage E^ components in the amplitude envelope, is 

developed across the filter capacitor. The cutoff frequency of the 

RC filter is essentially 15 cycles per second. 

The output transformer of the audio amplifier is used to drive 

10 General Ceramic ferrite cores. These cores are type S3 material 



www.manaraa.com

Figure 1. Block diagram of the system to record amplitude and 
frequency characterizations. 
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Figure 2. Circuitry for deriving the amplitude and frequency 
characterization signals. 
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and need a drive of about 300 milliampere-turns to be switched. The 

ten cores are simply stacked with ten turns on the primary winding 

and ten turns on the secondary winding. The output of the cores is 

amplified, rectified, and then filtered. The voltage then is a 

linear function of the frequency of the drive, and changes in Ef 

indicate the frequency modulation present in the input to the core 

switch. The gain of the audio amplifier was adjusted so that it was 

just below the threshold at which noise would switch the cores. The 

RC filter in this circuit also has a nominal cutoff of 15 cycles 

per second. 

The relationship between the amplitude output voltage, E^, 

and the input to the phase inverter stage of the audio amplifier 

is shown in Figure 3. The gain falls off at low frequencies in the 

audio amplifier but at high frequencies is essentially constant. 

This variation of gain with frequency has little effect on the 

operation of the system as long as there is sufficient input to 

switch the cores in the frequency detection circuitry. It will be 

shown that the derived amplitude signal contains virtually no infor­

mation. The variation of the voltage, E^., versus frequency of a 

constant-amplitude input to the phase inverter stage of the audio 

amplifier is shown in Figure 4. It can be seen that for input 

signals with magnitudes over one volt there is sufficient drive to 

prevent non-linearity below about 10 kilocycles per second, a 

frequency normally considered above the range of most speech. It 

can also be seen that is a linear function of the input frequency 
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Figure 3. Output voltage, , versus input voltage 
as a function of frequency. 



www.manaraa.com

17 

2.0 

1.8 

1.6 

1.4 

1.0 

> 0.8 

0.6 

0.4 

0.2 

20.0 25.0 30.0 35.0 15.0 
VOLTS IN (AC) 

10.0 5.0 



www.manaraa.com

Figure 4. Output voltage, Ef , versus frequency 
for a constant input. 
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over the range of speech frequencies. 

The outputs of the two filters, and Ef , are then plotted 

using a two channel Sanborn recorder, model 60-1300. This recorder 

has a cutoff frequency of 40 cycles per second, and therefore the 

amplitude and frequency signals are well within the range of flat 

response. For several of the conducted tests the preamplifier in 

the recorder was used to increase the level of the frequency signal. 

Since the signals were all normalized in the correlation studies, the 

absolute amplitude values of the signals were not important except 

that the gain was kept constant throughout any given recording run. 

Figure 5 shows typical amplitude and frequency characteristics for 

the spoken digits "zero" to "nine" obtained from the Sanborn recorder 

running at a speed of 50 millimeters per second. 

The correlations studies of the speech characterization signals 

were done on the Cyclone digital computer, a part of the computa­

tional facilities at Iowa State University of Science and Technology. 

This machine is a medium speed, general purpose, Illiac-type computer. 

The analog information was first converted to a digital representation 

by essentially sampling the signals at a 50 cycles per second rate. 

The conversion was actually done by hand although it could have been 

implemented more conveniently with available commercial equipment. 

The digital information was used to perform the correlation studies 

discussed in the next section. 
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Figure 5. Amplitude and frequency characteristics of 
spoken digits obtained from the output of 
the Sanborn recorder. 
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CORRELATION STUDIES OF THE SPEECH CHARACTERIZATION SIGNALS 

In order to determine what information structure was contained 

in the derived signals, it was decided that a classification scheme 

was necessary. Since each spoken digit can be uniquely recognized 

by a listener, then the degree of information contained in a 

particular derived signal could be measured by the recognizability 

of this signal. It was therefore proposed to run correlation studies 

on these signals in order to determine their degree of similarity 

or dissimilarity. 

As mentioned in the previous section, the Cyclone digital 

computer was used to perform these studies. Library routine K-2, 

entitled, "Product Moment Correlations, Means, Standard Deviations, 

Variances and Covariances", was used to perform the calculations. 

The library routine was read into the machine, followed by a para­

meter tape and lastly the data tape. The parameter tape specified 

the sample size, the number of variables, the number of significant 

digits to be retained in the correlation matrix for output and the 

number of significant digits to be retained for the means, standard 

deviations, and variance-covariance matrix for output. Either of 

the latter outputs could be suppressed by indicating zero signifi­

cant digits. 

The product moment correlation coefficient is a measure of the 

degree of relation of two variables. It can be shown to range 

between +1 and -1. This program computed the matrix of product 
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moment correlations between each pair of a set of variables. Because 

this matrix is symmetrical, it vas necessary to print out only half 

of the off-diagonal coefficients. 

The product moment correlation coefficient may be •written in 

terms of the observed data as 

r £(x - x)(y - y) 

[2(x - x)2 2(y - y)2] 2 

For computational purposes this can be rewritten in terms of x, y, 

xy, and s, the sample size as 

s S xy- Z % Z y 

( [s Z x2 - (Zx)2] [sCy2 - (Zy)2] F 

By using this form the observation points can be stored in the 

memory one at a time, the sums and product-sums being formed point 

by point. When the observations have all been read into the machine, 

the correlations are calculated and the matrix of coefficients is 

printed out. 

The frequency and amplitude correlation matrices for the ten 

digit vocabulary as spoken by the author are given in Tables 

la and lb. These matrices were calculated from recorded data 

similar to that shorn in Figure 5. When analyzing the speech of 

a single person, the sampling interval was determined by the length 

of the longest signal. In every case this was the representation 

of "six". The amplitude signal, because of its initial, very 
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positive rise, was used to initiate the sampling process and its 

trailing edge to stop the process. An amplitude level was selected 

such that the only change occurring was due to the decay time of 

the RC filter, and when the amplitude signal had dropped to this 

level, the sampling of both signals was stopped. 

It is evident from the frequency matrix, Table la, that the 

frequency characteristics can be classified in the following groups : 

Group a - 1-3-4-5-9 

Group b - 2-7-0 

Group c - 6 

Group d - 8 

A Tirim'Timm value of r of +0.8000 was used to determine the above 
xy 

groups. That is, those coefficients with values greater than 

+0.8000 indicated the digits belonged to the same basic group. It 

was determined by examination of a large number of correlation 

matrices that this was the highest value that could be used reliably 

in making this decision. For some circumstances even lower values 

may be dictated. 

The amplitude matrix, Table lb, is interesting because of its 

uniformity among the calculated coefficients. From the matrix it 

would appear that the amplitude characteristic of "six" is the only 

one that materially differs from the others. This is verified by 

Figure 5. Consequently, it would be impossible to distinguish the 

other nine digits on the basis of the amplitude characteristic 

alone. This implies that there is very little information structure 
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Table la. Frequency correlation matrix for the 
ten digits spoken by a single speaker. 

Digits 

5 6 7 8 

+1,0000 +0.5089 +0.9587 +0.8594 +0.9859 -0.1003 +0.5226 +0.7338 +0.9752 +0.7920 

+1.0000 +0.4914 +0.4069 +0.4620 +0.1761 +0.9130 +0.4719 +0.3681 +0.6914 

+1.0000 +0.9534 +0.9263 -0.2061 +0.4457 +0.6552 +0.9646 +0.6778 

+1.0000 +0.8061 -0.2919 +0.3552 +0.5562 +0.8874 +0.5989 

+1.0000 -0.1591 +0.4581 +0.7313 +0.9674 +0.7514 

+1.0000 +0.3014 +0.2043 -0.1736 +0.1744 

+1.0000 +0.5195 +0.3690 +0.8389 

+1.0000 +0.7159 +0.7552 

+1.0000 +0.6775 

+1.0000 
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Table lb. Amplitude correlation matrix for the 
ten digits spoken by a single speaker. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.9647 +0.9609 +0.9665 +0.9495 +0.4462 +0.9591 +0.9063 +0.9540 +0.9162 

+1.0000 +0.9306 +0.9102 +0.9127 +0.3805 +0.9803 +0.9000 +0.8855 +0.8295 

+1.0000 +0.9874 +0.9940 +0.3640 +0.9446 +0.8795 +0.9813 +0.9625 

+1.0000 +0.9888 +0.3822 40.9308 +0.8840 +0.9912 +0.9781 

+1.0000 +0.3762 +0.9330 +0.8996 +0.9896 +0.9753 

+1.0000 +0.4043 +0.5109 +0.4220 +0.4043 

+1.0000 +0.9099 +0.9069 +0.8537 

+1.0000 +0.8996 +0.8655 

+1.0000 +0.9905 

+1.0000 
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in the amplitude envelope components of frequencies less than about 

15 cycles per second. Therefore, most of the remainder of the 

investigation was concerned with only the frequency signal. 

It has been shown that the frequency characteristics of the 

ten digits for a single speaker can be classified into four or five 

groups. It is evident that it would be possible to only make a 

group designation of an unknown signal rather than a unique digit 

designation using only the derived frequency characteristic. The 

next problem investigated was the invariance of these characteristics 

among several speakers. The recorded signals would be expected to 

vary because of the differences of pitch among speakers. However, 

the signals are normalized by the computer program as the problem 

is run, and it is the information structure of the normalized signal 

that is of interest. 

The correlation matrices of the frequency signal for each of 

the ten digits as spoken by ten men and women are given in 

Tables 2a - 2j. Six of the ten persons are men. Ko attempt was 

made to classify the language characteristics of the speakers 

themselves. A midwest speech characteristic was common in all the 

subjects. 

The time base for any one digit frequency signal was made the 

same for all ten speakers. This meant that some patterns were con­

densed while others were elongated. Essentially the average length 

for a given digit was used as the reference to which all time bases 

were changed. Normally only very small changes were necessary except 
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Table 2a. Correlation matrix of the frequency signal 
for "one" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rove Anderson Skola * Rfeutez* Mage# Anderso# 

+1.0000 +0.9546 +0.9811 +0.7899 +0.9447 +0.9560 +0.9917 +0.9505 +0.8621 +0.9596 

+1.0000 +0.9545 +0.8907 +0.9582 +0.9746 +0.9670 +0.8428 +0.9526 +0.9503 

+1.0000 +0.8090 +0.8944 +0.9148 +0.9643 +0.9219 +0.8428 +0.9654 

+1.0000 +0.8091 +0.8734 +0.8047 +0.6272 +0.9531 +0.8972 

+1.0000 +0.9759 +0.9567 +0.8859 +0.9075 +0.8940 

+1.0000 +0.9681 +0.8632 +0.9442 +0.9442 

+1.0000 +0.9376 +0.8756 +0.9599 

+1.0000 +0.7133 +0.8713 

+1.0000 +0.9106 

+1.0000 

*Female 
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Table 2b. Correlation matrix of the frequency signal 
for "two" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Reuter Magee Anderson 

+1.0000 +0.9688 +0.9856 +0.8921 +0.9038 +0.6407 +0.9459 +0.9299 +0.9769 +0.8475 

+1.0000 +0.9768 +0.9076 +0.7891 +0.5042 +0.8794 +0.9276 +0.9657 +0.8695 

+1.0000 +0.8947 +0.8524 +0.5213 +0.9139 +0.9672 +0.9796 +0.8885 

+1.0000 +0.7577 +0.5299 +0.9089 +0.8128 +0.9449 +0.6618 

+1.0000 +0.8142 +0.9491 +0.7923 +0.8561 +0.6336 

+1.0000 +0.7606 +0.3518 +0.5436 +0.2300 

+1.0000 +0.8260 +0.9383 +0.6701 

+1.0000 +0.9418 +0.9279 

+1.0000 +0.8394 

+1.0000 
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Table 2c. Correlation matrix of the frequency signal 
for "three" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+0 .5350 +0 .6780 +0 .8843 +0 .6768 +0 .8234 +0.4329 

+0 .7586 +0 .8890 +0 .9089 +0 .4477 •K) .9539 +0.5618 

+0 .3605 +0 .3345 +0 .7071 +0 .9618 +0 .5251 +0.2860 

+0 .1114 +0 .0484 +0 .5206 +0 .8886 +0 .2136 +0.1590 

+1 .0000 +0 .9206 +0 .7744 +0 .2286 +0 .7503 +0.9068 

+1, .0000 +0 .8189 +0 .1885 +0 .8997 +0.7735 

+1 .0000 +0 .6265 +0 .8777 +0.6242 

+1 .0000 +0 .4393 +0.1881 

+1 .0000 +0.5615 

+1.0000 
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Table 2d. Correlation matrix of the frequency signal 
for "four" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+0. 6653 -K) .2847 +0 .2906 +0 .5361 +0.5051 +0.4578 +0.1009 -0.4747 

+0. 7391 +0 .2951 +0 .3229 +0 .6372 +0.6732 +0.5028 +0.2483 -0.2869 

+1. 0000 +0 .7022 +0 .4796 +0 .8562 +0.8581 +0.8993 +0.1506 -0.3910 

+1 .0000 +0 .7462 +0 .7446 +0.5619 +0.8639 +0.2272 -0.3225 

-n .0000 +0 .8029 +0.5807 +0.6025 +0.6124 +0.0503 

+1 .0000 +0.8252 +0.7942 +0.3629 -0.2252 

+1.0000 +0.8114 +0.4878 +0.0964 

+1.0000 +0.2394 -0-2885 

+1.0000 +0.6604 

+1.0000 
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Table 2e. Correlation matrix of the frequency signal 
for "five" as spoken by ten men and women. 

P. 
Schauer Rickey Casson MCConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.8868 +0.3134 +0.9424 +0.7030 +0.4005 -0.0530 +0.6703 -0.0293 +0.1904 

+1.0000 +0.4783 +0.8020 +0.7205 +0.5924 +0.2365 +0.6730 +0.2493 +0.4098 

+1.0000 +0.2182 +0.7339 +0.9540 +0.6906 +0.4985 +0.7557 +0.7557 

+1.0000 +0.5894 +0.3109 -0.0569 +0.7699 -0.0468 +0.1628 

+1.0000 +0.8169 +0.3597 +0.6952 +0.4685 +0.6689 

+1.0000 +0.7787 +0.6361 +0.8324 +0.8751 

+1.0000 +0.4464 +0.9336 +0.8467 

+1.0000 +0.5133 +0.6673 

+1.0000 +0.9490 

+1.0000 
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Table 2f. Correlation matrix of the frequency signal 
for "six" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+0 .1760 +0 .4160 +0.0179 +0.6600 +0.0810 +0.6461 +0.0639 +0.6863 

+0 ,6616 -0 .2583 +0.4235 -0.1020 +0.2152 -0.0714 +0.5402 -0.2810 

+1 .0000 +0 .1396 +0.7727 +0.2407 +0.6970 +0.4343 +0.6785 -0.0103 

+1 .0000 +0.5648 +0.8594 +0.6122 +0.7922 +0.5391 +0.8418 

+1.0000 +0.5290 +0.8898 +0.5030 +0.8812 +0.2288 

+1.0000 +0.5228 +0.7452 +0.5618 +0.8658 

+1.0000 +0.5433 +0.6474 +0.2445 

+1.0000 +0.4910 +0,8162 

+1.0000 +0.3326 

+1.0000 
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Table 2g. Correlation matrix of the frequency signal 
for "seven" as spoken "by ten men and vomen. 

P. 
Schauer Rickey Casson McConnell Rove Anderson Skola Rueter Magee Anderson 

+0.9242 +0 .9746 +0 .7994 +0 .9477 +0.7503 +0.8645 +0.8666 +0.6251 +0.9881 

+1.0000 +0 .9522 +0 .9004 +0 .9759 +0.9152 +0.9665 +0.9829 +0.8342 +0.9283 

+1 .0000 +0 .8642 +0 .9854 +0.8392 +0.9200 +0.9160 +0.7335 +0.9737 

+1 .0000 +0 .9122 +0.9394 +0.8841 +0.9168 +0.9386 +0.8311 

+1 .0000 +0.8967 +0.9624 +0.9588 +0.8111 +0.9626 

+1.0000 +0.9213 +0.9563 +0.9634 +0.7720 

+1.0000 +0.9638 +0.8487 +0.8942 

+1.0000 +0.8895 +0.8741 

+1.0000 +0.6634 

+1.0000 
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Table 2h. Correlation matrix of the frequency signal 
for "eight" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+0, .6065 +0.6072 +0 .1778 +0.6776 +0.7033 +0.4516 +0.4422 +0.6296 +0.3081 

+1. ,0000 +0.9164 +0 .1511 +0.9828 +0.6896 +0.7779 +0.7706 +0.9877 +0.5468 

+1.0000 +0 .2773 +0.9417 +0.7889 +0.9056 +0.9391 +0.9472 +0.3002 

+1 .0000 +0.2387 +0.4166 +0.4983 +0.2970 +0.2242 -0.1712 

+1.0000 +0.7768 +0.8324 +0.7889 +0.9878 +0.4714 

+1.0000 +0.8646 +0.7031 +0.7727 -0.0434 

+1.0000 +0.8675 +0.8419 -0.0243 

+1.0000 +0.8244 +0.1535 

+1.0000 +0.4631 

+1.0000 
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Table 2i. Correlation, matrix of the frequency signal 
for "nine" as spoken by ten men and women 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.5762 +0.7634 +0.5176 +0.7320 +0.5712 +0.6223 +0.7591 +0.7944 +0.9414 

+1.0000 +0.8637 +0.9552 +0.9336 +0.9816 +0.9807 +0.8212 +0.9269 +0.7864 

+1.0000 +0.7564 +0.9558 +0.8910 +0.8702 +0.9304 +0.8716 +0.9148 

+1.0000 +0.8863 +0.4467 +0.9521 +0.6753 +0.9119 +0.7207 

+1.0000 +0.9613 +0.9442 +0.8555 +0.9472 +0.8955 

+1.0000 +0.9700 +0.7951 +0.9144 +0.7857 

+1.0000 +0.8454 +0.9555 +0.8246 

+1.0000 +0.8381 +0.8965 

+1.0000 +0.9208 

+1.0000 
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Table 2j. Correlation matrix of the frequency signal for 
"zero" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.9792 +0.9079 +0.7277 +0.8761 +0.9180 +0.4739 +0.8831 +0.6741 +0.8946 

+1.0000 +0.8503 +0.8082 +0.9084 +0.9252 +0.4015 +0.9412 +0.7824 +0.9492 

+1.0000 +0.6797 +0.8708 +0.8943 +0.7686 +0.7236 +0.5622 +0.7546 

+1.0000 40. 9164 40.8261 +0.3871 +0.8787 +0.9625 +0.8957 

+1.0000 +0.9574 +0.6156 +0.8993 +0.8735 +0.9191 

+1.0000 +0.6193 +0.9132 +0.8091 +0.9287 

+1.0000 +0.2846 +0.2586 +0.3232 

+1.0000 +0.9089 +0.9912 

+1.0000 +0.9139 

+1.0000 
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in those cases where the person spoke very rapidly. Changing the 

time base of some signals did cause a shift in the characteristic 

structure of the signals. This accounts for some of the apparently 

poor correlation for some digits. 

The most interesting finding of this particular study is that 

there is no way of distinguishing between male and female speakers. 

Examination of the ten matrices revealed that certain groupings were 

possible. From Table 2a it is apparent that all signals are highly 

correlated, meaning that essentially the same structure exists in 

the frequency signal of "one" for all ten speakers. For "two" all 

are highly correlated except that of P. Anderson. Two groupings 

were possible for the digit "three". The first included Schauer, 

Rickey, Rowe, P. Anderson, Skola, Magee, and Anderson, while the 

second was made up of Casson, McConnell and Reuter. The evaluation 

of the correlation matrix for "four" is not as clear cut as some of 

the others. Two small groups are possible. Schauer and Rickey can 

be classified together and Casson, P. Anderson, Skola, and Reuter. 

McConnell, Rowe, Magee and Anderson are not highly correlated with 

any other signal. 

Table 2e showed that for "five" Schauer, Rickey, and McConnell 

are highly correlated while all the others, excluding Reuter, are 

grouped together. The correlation coefficients for McConnell, P. 

Anderson, Reuter, and Anderson indicated one group for the digit 

"six" while Rowe, Skola, and Magee made up another. The rest are 

not highly correlated with any other signal. Table 2g indicated 
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all signals are highly correlated for "seven". For "eight" only 

Schauer, McConnell, and Anderson are not highly correlated with any 

other signal. All but Schauer were grouped for "nine", and for 

"zero" all but Skola. 

It is apparent from the above that, except for several 

instances, the majority of the signals from different speakers for 

a given digit were highly correlated. There also were no well 

defined divisions among the groups of speakers. This would indi­

cate that the effects of variables such as pitch have been mini­

mized in this speech characterization technique. The enunciation 

of the digit by any speaker appeared to have the most effect on 

the frequency characteristic. 

The above correlative evaluation of individual speech 

characteristic was repeated with the additional condition that an 

attempt was made to get all speakers to talk at essentially the 

same speed. The characteristics were analyzed and are shown in 

Figure 6. In the recording phase the speakers repeated the digits 

after the author. Only the repeated digits were recorded however. 

It was likely that this technique also introduced some "learning" 

in the speakers which would affect enunciation particularly. 

However, part of the purpose of this second run was to determine 

the effects of enunciation on the characteristics. The analysis 

of the data was made in exactly the same way as the previously 

reported run. The results of the correlation study are given in 

Tables 5a - 3j. 
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Figure 6. Frequency characterization for the ten digit 
vocabulary for ten different speakers. 
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The "one" signals were all highly correlated as can "be seen 

from Table 3a. Table 3b indicated a high degree of correlation for 

"two" among the speakers except for McConnell and Anderson. From 

Figure 6 it can be seen that even for these two speakers the general 

shape is the same but the trailing edges fall off more rapidly. The 

signals representing "three" are much less highly correlated. In 

fact, three groupings can be made from the correlation matrix, 

Table 3c, or Figure 6. Schauer, Rickey, Casson, Rowe, and Reuter 

can be grouped on the basis of the correlation matrix. In general, 

these signals can be described as having an initial peak, falling 

to some nearly steady value, and then decaying toward the residual 

value. P. Anderson, Skola, and Magee form a second group in which 

the signals can be thought of as having an initial peak, falling 

to a minimal value, rising to the maximum signal level, and then 

decaying. The signals of McConnell and Anderson, the third group, 

are best described as being rather broad with only a slight dip 

in the amplitude. 

Two groups also can be obtained for "four" from Table 3d. 

The first group, characterized by a signal with an initial peak, 

consists of Schauer, Rickey, Casson, Skola, and Reuter. A second 

group, McConnell, P. Anderson, Magee and Anderson, have a signal 

of nearly constant value throughout the region of interest. The 

enunciation of the fricative consonants appears to determine this 

grouping. Only the characteristics for Schauer and Casson are 

not highly correlated for "five". Again the emphasis of the 
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Table 3a. Correlation matrix of the frequency signal for 
"one" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+0 .9590 +0 .9284 +0 .9019 +0 .9730 +0 .9455 +0 .8773 +0.9658 

+0 .9646 +0 .9257 +0 .8877 +0 .9656 +0 .9418 +0 .8780 +0.9653 

+0 .9758 +0 .9886 +0 .9876 +0 .9606 +0 .9877 +0 .9692 +0.8797 

+1 .0000 +0 .9860 +0 .9624 +0 .9783 +0 .9852 +0 .9636 +0.9449 

+1 .0000 +0 .9857 +0 .9678 +0 .9923 +0 .9839 +0.9026 

+1 .0000 +0 .9476 •K) .9761 +0 .9701 +0.8550 

+1 .0000 +0 .9777 +0 .9473 +0.9646 

+1 .0000 +0 .9777 +0.9159 

+1.0000 +0.8755 

+1.0000 



www.manaraa.com

Table 3b. Correlation matrix of the frequency signal for 
"two" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.9586 +0.9449 +0.7786 +0.8530 +0.9532 +0.9689 +0.9658 +0.9732 +0.8062 

+1.0000 +0.8976 +0.8708 +0.9066 +0.9517 +0.9673 +0.9445 +0.9206 +0.7620 

+1.0000 +0.7228 +0.8969 +0.8362 +0.8718 +0.9541 +0.9737 +0.7338 

+1.0000 +0.9166 +0.7599 +0.8223 +0.6936 +0.7277 +0.3899 

+1.0000 +0.7583 +0.8273 +0.8285 +0.8635 +0.4924 

+1.0000 +0.9788 +0.9321 +0.8756 +0.8644 

+1.0000 +0.9246 +0.9070 +0.7907 

+1.0000 +0.9578 +0.8852 

+1.0000 +0.7731 

+1.0000 
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Table 3c. Correlation matrix of the frequency signal for 
"three" as spoken by ten men and vomen. 

P. 
Schauer Rickey Casson McConnell Rove Anderson Skola Rueter Magee Anderson 

+0 .8418 +0 .3788 +0 .7832 +0 .4171 +0.7031 +0.7334 +0.7391 +0.5707 

+0 .8429 +0 .5390 +0 .5964 +0 .1702 +0.2339 +0.6654 +0.5110 +0.6069 

+1 .0000 +0 .3157 +0 .8414 +0 .1058 +0.3822 +0.85C4 +0.4725 +0.4561 

+1 .0000 +0 .2454 +0 .7997 +0.5569 +0.2754 +0.7628 +0.8692 

+1 .0000 +0 .1022 +0.5615 +0.9825 +0.3989 +0.4312 

+1 .0000 +0.7218 +0.0489 +0.8508 +0.7261 

+1.0000 +0.4877 +0.8369 +0.6424 

+1.0000 +0.3528 +0.4573 

+1.0000 +0.7702 

+1.0000 
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Table 3d. Correlation matrix of the frequency signal for 
"four" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Reuter Magee Anderson 

+1.0000 +0.3194 +0.9192 -0.3861 +0.2504 +0.0027 +0.6554 +0.6905 +0.1180 -0.2244 

+1.0000 +0.6017 +0.4239 +0.9349 +0.5958 +0.8775 +0.8197 +0.6626 +0.7002 

+1.0000 -0.2216 +0.5134 +0.1510 +0.8449 +0.8858 +0.2445 -0.0062 

+1.0000 +0.3889 +0.8658 +0.1393 -0.1161 +0.7430 +0.8239 

+1.0000 +0.5591 +0.8135 +0.7860 +0.7338 +0.7364 

+1.0000 +0.4232 +0.1872 +0.8297 +0.7976 

+1.0000 +0.9293 +0.5042 +0.4254 

+1.0000 +0.3357 +0.2409 

+1.0000 +0.8345 

+1.0000 
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Table 3e. Correlation matrix of the frequency signal for 
"five" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+0 .3755 +0. 7661 -0. 2240 +0.2257 +0.2029 -0.0429 +0.0348 +0.2264 +0.3277 

+1, .0000 +0. 7970 +0. 7273 +0.8742 +0.8750 +0.8508 +0.8723 +0.9452 +0.8653 

+1. 0000 +0. ,2934 +0.5500 +0.5786 +0.4761 +0.4796 +0.6578 +0.6000 

+1. 0000 +0.7647 +0.8424 +0.9575 +0.9365 +0.8474 +0.6835 

+1.0000 +0.9206 +0.8731 +0.9074 +0.9471 +0.9561 

+1.0000 +0.9346 +0.9587 +0.9714 +0.8309 

+1.0000 +0.9752 +0.9462 +0.7901 

+1.0000 +0.9631 +0.8388 

+1.0000 +0.8911 

+1.0000 
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Table 3f. Correlation matrix of the frequency signal for 
"six" as spoken by ten men and women. 

P. 
Schauer Rickey Gasson McConnell Rove Anderson Skola Rueter Magee Anderson 

+0 .9016 +0 .7334 +0 .8292 +0 .8395 +0 .8204 +0 .8164 

+0 .7632 +0 .8312 +0 .7901 +0 .8035 +0 .5885 +0 .5556 

+0 .8640 +0 .7350 +0 .8626 +0 .8199 +0 .7699 +0 .8385 

+0 .8368 -K) .8454 +0 .8898 -K) .8544 +0 .7015 +0 .6017 

+1 .0000 +0 .8912 +0 .9326 +0 .9723 +0 .9455 +0 .6278 

+1 .0000 +0 .7845 +0 .9458 +0 .8105 +0 .4271 

+1.0000 +0.8905 +0.8907 +0.6879 

+1.0000 +0.9198 +0.5276 

+1.0000 +0.4763 

+1.0000 
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Table 3g. Correlation matrix of the frequency signal for 
"seven" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rove Anderson Skola Rueter Magee Anderson 

+1.0000 +0.8268 +0.9777 +0.6506 +0.8439 +0.8127 +0.9799 +0.9622 +0.9873 +0.9940 

+1.0000 +0.8285 +0.8776 +0.9977 +0.9963 +0.7893 +0.9384 +0.8666 +0.7903 

+1.0000 +0.6934 +0.8461 +0.8137 +0.9909 +0.9436 +0.9839 +0.9840 

+1.0000 +0.8777 +0.8837 +0.6584 +0.7574 +0.7358 +0.6128 

+1.0000 +0.9957 +0.8083 +0.9453 +0.8821 +0.8092 

+1.0000 +0.7738 -KI.9260 +0.8512 +0.7723 

+1.0000 +0.9217 +0.9743 +0.9854 

+1.0000 +0.9732 +0.9430 

+1.0000 +0.9829 

+1.0000 
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Table 3h. Correlation matrix of the frequency signal for 
"eight" as spoken by ten men and women. 

Schauer Rickey Casson McConnell Rowe 
p. 
Anderson Skola Rueter Magee Anderson 

+1.0000 +0, .5817 +0. .5667 +0, .6523 +0, .7944 +0. .8788 +0, .7568 +0. .3620 +0. .7020 +0, .7583 

+1, .0000 +0, .3997 +0, .7211 +0, .6606 +0, .8381 +0, .5348 +0, .9226 +0, .6285 +0, .0535 

+1, .0000 +0, .9052 +0, .2227 +0, .6221 +0, .1651 +0, .3253 +0, .2882 +0, .2949 

+1, .0000 +0, .4002 +0, .8153 +0, .2840 +0, .6646 +0. .4231 +0, .1829 

+1. .0000 +0, .7821 +0, .9303 +0, .3761 +0, .8752 +0, .6603 

+1. .0000 +0, .7237 +0, .6819 +0, .7682 +0, .4226 

+1. .0000 +0, .2464 +0, .8914 +0, .6581 

+1, .0000 +0. .3516 -0, .2308 

+1.0000 -0.4758 

+1.0000 
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Table 31. Correlation matrix of the frequency signal for 
"nine" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.7991 +0.7077 +0.7572 +0.5189 +0.6480 +0.8496 +0.8846 +0.8530 +0.9479 

+1.0000 +0.9752 +0.9849 +0.9107 +0.9462 +0.9639 +0.9662 +0.9802 +0.7454 

+1.0000 +0.9742 +0.9212 +0.9822 +0.9566 +0.9155 +0.9330 +0.6683 

+1.0000 +0.9081 +0.9477 +0.9429 +0.9598 +0.9557 +0.7033 

+1.0000 +0.9107 +0.8446 +0.8052 +0.8569 +0.4880 

+1.0000 +0.9327 +0.8606 +0.8838 +0.5709 

+1.0000 +0.9388 +0.9444 +0.8005 

+1.0000 +0.9705 +0.8343 

+1.0000 +0.8186 

+1.0000 
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Table 3j. Correlation matrix of the frequency signal for 
"zero" as spoken by ten men and •women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.8452 +0.8657 +0.8583 +0.8608 +0.9089 +0.9138 +0.9732 +0.9304 +0.4274 

+1.0000 +0.8426 +0.8477 +0.6577 +0.7659 +0.6432 +0.8245 +0.7179 +0.1922 

+1.0000 +0.9766 +0.9128 +0.9461 +0.8748 +0.9350 +0.9223 +0.6320 

+1.0000 +0.9227 +0.9433 +0.8709 +0.9378 +0.9042 +0.6620 

+1.0000 +0.9707 +0.9739 +0.9465 +0.9635 +0.8064 

+1.0000 +0.9584 +0.9685 +0.9779 +0.6740 

+1.0000 +0.9604 +0.9854 +0.7242 

+1.0000 +0.9747 +0.5999 

+1.0000 +0.6775 

+1.0000 
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fricative consonant appears to account for this difference in the 

signals. For the digit "six" by Anderson seems to be the only badly 

correlated signal. This, from Figure 6, appears to be true because 

the second peak occurs sooner than for most of the other signals. 

The rounded leading edge of the McConnel "seven" signal explains 

the lack of high correlation for that signal with the others vhich 

are highly correlated. There are no clear cut groups from Table 3h 

for "eight". It appears from Figure 6 that the enunciation of the 

final "t" plays an important role in determining the characteris­

tic of the digit. For "nine" the correlation is good except for 

Schauer and Anderson. In the case of Schauer, the signal rises 

more rapidly, and for Anderson, it falls off more slowly than most 

of the others. From Table 3j the signals of Rickey and Anderson are 

the poorest correlated. The "zero" of Rickey has a broader peak 

while that of Anderson falls back to a steady level. Most of the 

signals decay without a plateau. Again there was no line of dis­

tinction between male and female speakers although in some cases 

all the signals were not highly correlated. 

It has previously been shown that essentially no information 

structure exists in the derived amplitude signals but that some 

information is carried in the frequency signal. At least enough 

information was present to permit groupings as reported in the 

discussion of Table la. Since it has been known that a steady tone 

loses its intelligibility if sustained for a long period of time, 

it was decided to further investigate the rate of change of the 
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modulating frequencies. This investigation was also performed on 

the "basis of correlation studies on the Cyclone digital computer. 

An approximation to the derivative of the frequency signal was used 

for the analysis. Since a digital representation was available, 

it was decided to use the first difference in the observations in 

lieu of the first derivative of the frequency signal. 

For the frequency characteristics shown in Figure 5, the 

matrices of Tables 4a and 4b were calculated. It is obvious from 

Table 4a that only a broad classification is possible for each 

digit other than "six" and "eight". These two could be identified 

or recognized on the basis of the frequency signal alone. The 

correlation matrix of the first differences of the frequency signal 

is presented in Table 4b. Study of this matrix indicates that 

only the digits "two", "three", "four", and "five" have highly 

correlated first difference signals. This can be explained by 

observation of the emphasis on the enunciation of the initial con­

sonants sounds of these digits. It appears that the characteristics, 

as shown in Figure 5, are actually exaggerated in this respect. 

The pronunciation of the digits "five" and "nine" has been 

exaggerated in some voice communication systems in order to try to 

increase the probability of correct recognition of a sequence of 

digits. Essentially this has been accomplished by pronouncing the 

two digits as though they each had two syllables. The frequency and 

amplitude characteristics of the ten digits with the pronunciation of 

"five" and "nine" exaggerated are shown in Figure 7. A correlation 

study was run on the frequency signal and its first difference. 
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to determine what effect these changes might make in the information 

structure of these signals. The results of this study are listed in 

Tables 5a and 5b. From Table 5a, one can group the frequency signals 

as shown below: 

Group a - 1-5-9 

Group b - 2-3-4-7-0 

Group c - 6 

Group d - 8 

Again it is evident that there is insufficient information in the 

frequency signal alone to uniquely identify the spoken digit. How­

ever, the correlation matrix for the first difference frequency has 

as its largest cross correlation coefficient a value of +0.7108. 

Therefore, on the basis of the first difference signals it would be 

possible to recognize any signal from any other using a correlation 

technique. 

The first difference frequency correlation matrices were calcu­

lated for all signals shown in Figure 6. The matrix for the author 

is given in Table 4b and the other speakers in Tables 6a-6i. It will 

be noticed that generally the first differences are much less corre­

lated than the frequency characteristics themselves. Depending upon 

the speaker, however, there may be several first difference signals 

•which are too highly correlated to be distinguished one from another 

by using this technique. However, no attempt had been made to train 

these speakers to enunciate properly. In Tables 7a-7j the correla­

tion matrices of the first difference frequency signals for each of the 
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Table 4a. Correlation matrix of the frequency signal 
for the ten digits. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.6321 +0.5454 +0.4423 +0.5765 +0.2173 +0.7657 +0.5801 +0.9168 +0.9021 

+1.0000 +0.7178 +0.9440 +0.9453 +0.2184 +0.8760 +0.3111 +0.8033 +0.6844 

+1.0000 +0.8009 +0.8346 -0.1566 +0.7161 +0.7248 +0.7702 +0.5754 

+1.0000 +0.9622 +0.1141 +0.8045 +0.3508 +0.6906 +0.5388 

+1.0000 +0.1834 +0.8952 +0.4372 +0.8036 +0.6734 

+1.0000 +0.3006 -0.1533 +0.1490 +0.3104 

+1.0000 +0.5286 +0.8751 +0.9153 

+1.0000 +0.5851 +0.6074 

+1.0000 +0.8716 

+1.0000 
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Table 4b. Correlation matrix of the first difference frequency 
signal for the ten digits. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.1397 -0.0942 -0.0244 -0.0096 +0.3747 +0.3283 +0.3251 +0.4528 +0.6149 

+1.0000 +0.7897 +0.9021 +0.7415 +0.3436 +0.4903 +0.0814 +0.5687 +0.0447 

+1.0000 +0.8321 +0.8874 +0.0860 +0.4352 +0.2047 +0.5077 -0.1216 

+1.0000 +0.8306 +0.1216 +0.4231 +0.0737 +0.4763 -0.0967 

+1.0000 +0.3220 +0.5661 +0.1301 +0.5983 -0.0425 

+1.0000 +0.5381 +0.0256 +0.4337 +0.4505 

+1.0000 +0.2549 +0.6420 +0.7264 

+1.0000 +0.1932 +0.2788' 

+1.0000 +0.3549 

+1.0000 
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Figure 7. Frequency and amplitude characteristics of the 
ten digits with the pronunciation of "five" and 
"nine" exaggerated. 
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Table 5a. Correlation matrix of the frequency signal of 
ten digits with pronunciation of "five" and 
"nine" exaggerated. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.0314 +0.0585 +0.4755 +0.7181 -0.2461 +0.2526 +0.0290 +0.9054 +0.2500 

+1.0000 +0.8460 +0.5265 +0.2000 +0.2801 +0.8094 +0.2744 +0.0924 +0.7003 

+1.0000 +0.5264 +0.4458 +0.4907 +0.7694 +0.5884 +0.1607 +0.7734 

+1.0000 +0.6540 +0.3350 +0.8892 +0.4118 +0.6982 +0.8195 

+1.0000 +0.1667 +0.4944 +0.5805 +0.8622 +0.5466 

+1.0000 +0.3960 +0.4906 -0.1219 +0.4700 

+1.0000 +0.4127 +0.4320 +0.9501 

+1.0000 +0.2171 +0.4616 

+1.0000 +0.4147 

+1.0000 
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Table 5b. Correlation matrix of the first difference frequency 
signal of ten digits with pronunciation of "five" and 
"nine" exaggerated. 

Digits 

5 6 7 8 9 0 

+1.0000 -0.0327 -0.0976 -0.0975 +0.1170 -0.2416 -0.1894 -0.2372 +0.5589 -0.1077 

+1.0000 +0.5406 +0.2169 +0.1092 +0.3943 +0.5742 +0.1484 -0.0873 +0.0950 

+1.0000 +0.1683 +0.2508 +0.4551 +0.5604 +0.3341 -0.2056 +0.4973 

+1.0000 +0.1087 +0.1826 +0.7108 +0.2089 +0.3052 +0.0898 

+1.0000 +0.1622 +0.3588 +0.2789 +0.3603 +0.5029 

+1.0000 +0.5647 +0.2711 -0.2959 +0.5310 

+1.0000 +0.3711 +0.0016 +0.5854 

+1.0000 -0.2871 +0.3324 

+1.0000 -0.1090 

+1.0000 
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Table 6a. Correlation matrix of the first difference frequency 
.signal for Rickey. 

Digits 

5 6 7 8 

+1.0000 +0.2736 +0.2839 +0.2551 +0.2024 +0.6950 +0.8295 +0.6490 +0.3354 +0.8044 

+1.0000 +0.7163 +0.1698 +0.1765 +0.5840 +0.4507 +0.5415 +0.3917 +0.3103 

+1.0000 -0.1472 -0.0225 +0.4313 +0.3082 +0.3248 +0.4413 +0.2947 

+1.0000 +0.6825 +0.1839 +0.3818 +0.4633 -KD.1416 +0.2016 

+1.0000 +0.2241 +0.3844 +0.2330 +0.4371 +0.2973 

+1.0000 +0.7739 +0.5804 +0.5567 +0.6740 

+1.0000 +0.7304 +0.4271 +0.9455 

+1.0000 +0.2048 +0.5771 

+1.0000 +0.4475 

+1.0000 
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Table 6b. Correlation matrix of the first difference frequency 
for Casson. 

Digits 

5 6 7 8 

+1.0000 -0.0847 +0.1294 -0.1417 -0.0935 +0.2212 +0.1841 +0.5275 +0.5568 +0.2208 

+1.0000 +0.5243 +0.8889 +0.6571 +0.4424 +0.5751 +0.0267 +0.1836 +0.6344 

+1.0000 +0.6394 +0.4921 +0.4107 +0.4531 +0.2907 +0.3071 +0.6586 

+1.0000 +D.8575 +0.5106 +0.7793 +0.1185 +0.1047 +0.7727 

+1.0000 +0.4277 +0.8732 +0.2059 +0.1615 +0.7790 

+1.0000 +0.6529 +0.1780 +0.2451 +0.4977 

+1.0000 +0.2761 +0.2302 +0.7486 

+1.0000 +0.7627 +0.2924 

+1.0000 +0.3716 

+1.0000 
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Table 6c. Correlation matrix of the first difference frequency 
signal for McConnell. 

Digits 

+1.0000 

2 3 4 5 6 7 8 9 0 

+0 .2781 +0 .2140 +0 .3856 +0.6487 +0.3919 +0.6255 +0.1584 +0.3772 +0.4041 

+1, .0000 +0 .7558 +0 .4461 +0.2724 +0.5927 +0.5725 +0.3636 +0.3643 +0.8627 

+1 .0000 +0 .7669 +0.4683 +0.4733 +0.4200 +0.2640 +0.4568 +0.8348 

+1 .0000 +0.5297 +0.4416 +0.5758 +0.3779 +0.1961 +0.5951 

+1.0000 +0.4164 +0.6397 +0.3202 +0.6516 +0.5227 

+1.0000 +0.6274 +0.2108 +0.2562 +0.6308 

+1.0000 +0.4073 +0.3604 +0.5889 

+1.0000 +0.0371 +0.3530 

+1.0000 +0.4082 

+1.0000 
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Table 6d. Correlation matrix of the first difference frequency 
signal for Rowe. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.5506 +0.4655 40.1325 +0.3408 +0.4871 +0.6075 +0.7606 +0.5076 +0.4607 

+1.0000 +0.1076 +0.2604 +0.2622 +0.6238 +0.5444 +0.4757 +0.5175 +0.6549 

+1.0000 +0.3753 +0.7444 +0.0870 +0.3983 +0.5754 +0.6803 +0.1939 

+1.0000 +0.6313 -0.0127 +0.2972 +0.2817 +0.1792 +0.3096 

+1.0000 +0.0685 +0.3957 +0.5398 +0.3791 +0.3541 

+1.0000 +0.7317 +0.5573 +0.5084 +0.5255 

+1.0000 +0.8127 +0.6062 +0.5488 

+1.0000 +0.6417 +0.6347 

+1.0000 +0.5321 

+1.0000 
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Table 6e. Correlation matrix of the first difference frequency 
signal for P. Anderson. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.1469 -0.2167 -0.0019 +0.2182 +0.5129 +0.5585 +0.4250 +0.7206 +0.3643 

+1.0000 +0.2511 +0.4177 +0.1201 +0.2226 +0.2127 +0.1900 -0.0143 +0.1046 

+1.0000 +0.4119 +0.5375 -0.1772 -0.1706 -0.1250 +0.2703 -0.1185 

+1.0000 +0.5014 +0.1462 +0.3670 +0.3729 -0.0886 +0.2906 

+1.0000 +0.1867 +0.3829 +0.3327 +0.3904 +0.3159 

+1.0000 +0.6799 +0.3564 +0.3263 +0.5290 

+1.0000 +0.6321 +0.3410 +0.6698 

+1.0000 +0.1105 +0.4114 

+1.0000 +0.2910 

+1.0000 
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Table 6f. Correlation matrix of the first difference frequency 
signal for Skola. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.3401 -0.1474 +0.0975 +0.3455 +0.3186 +0.2505 +0.1662 +0.6950 +0.4076 

+1.0000 +0.1678 +0.2953 +0.0176 +0.2122 +0.0913 +0.0961 +0.3667 +0.2682 

+1.0000 +0.5592 +0.5040 +0.3095 +0.4815 +0.4019 +0.2021 +0.4324 

+1.0000 +0.3475 +0.5813 +0.8888 +0.2606 +0.2932 +0.6952 

+1.0000 +0.1640 +0.3910 +0.3952 +0.4337 +0.3906 

+1.0000 +0.7073 +0.0093 +0.2960 +0.7989 

+1.0000 +0.2263 +0.2646 +0.8294 

+1.0000 +0.0648 +0.2517 

+1.0000 +0.3446 

+1.0000 
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Table 6g. Correlation matrix of the first difference frequency-
signal for Reuter. 

Digits 

5 6 7 8 

+1.0000 -0.0227 +0.3228 +0.2068 +0.3617 +0.4393 +0.5428 +0.6052 +0.4450 +0.5791 

+1.0000 +0.4530 +0.3018 +0.1939 +0.2925 +0.5690 +0.2010 +0.5491 +0.3742 

+1.0000 +0.8590 +0.3795 +0.4713 +0.7484 +0.3979 +0.6370 +0.8029 

+1.0000 +0.2701 +0.3999 +0.5610 +0.3748 +0.4146 +0.5965 

+1.0000 +0.1848 +0.4075 +0.3331 +0.5673 +0.3131 

+1.0000 +0.6465 +0.4357 +0.4753 +0.5912 

+1.0000 +0.6712 +0.6470 +0.9280 

+1.0000 +0.3168 +0.6360 

+1.0000 +0.5713 

+1.0000 
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Table 6h. Correlation matrix of the first difference frequency 
signal for Magee . 

Digits 

5 6 7 8 9 0 

+1.0000 +0.4243 +0.3124 +0.0382 +0.3161 +0.6473 +0.6893 +0.9066 +0.2221 +0.7154 

+1.0000 -0.0220 +0.0157 +0.2133 +0.4777 +0.2991 +0.3827 +0.1072 +0.7208 

+1.0000 +0.7247 +0.7060 +0.2811 +0.3359 +0.5860 +0.0962 +0.1983 

+1.0000 +0.7181 +0.4393 +0.0073 +0.3399 +0.2726 +0.2079 

+1.0000 +0.5642 +0.1477 +0.4462 +0.4561 +0.2697 

+1.0000 +0.3517 +0.5981 +0.2969 +0.8143 

+1.0000 +0.6970 +0.0719 +0.5444 

+1.0000 +0.2505 +0.6892 

+1.0000 +0.0897 

+1.0000 
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Table 61. Correlation matrix of the first difference frequency 
signal for Anderson. 

Digits 

5 6 7 8 9 0 

+1.0000 -0.0190 +0.2555 +0.4402 +0.6111 +0.4106 +0.4639 -0.0946 +0.7257 +0.0078 

+1.0000 +0.0813 -0.0353 +0.4420 +0.2675 +0.1567 +0.0462 +0.4808 +0.6365 

+1.0000 +0.2191 +0.5157 -0.0181 +0.1853 +0.5791 +0.5160 +0.2089 

+1.0000 +0.3658 +0.2753 +0.4542 +0.2901 +0.3514 +0.0223 

+1.0000 +0.4593 +0.4887 +0.1047 +0.8045 +0.3227 

+1.0000 +0.6573 -0.1803 +0.4091 +0.4728 

+1.0000 +0.1779 +0.5672 +0.5400 

+1.0000 +0.2362 +0.2048 

+1.0000 +0.4610 

+1.0000 
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Table 7a. Correlation matrix of first difference frequency 
signal for "one" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.9004 +0.8288 +0.8599 +0.8291 +0.7267 +0.8199 +0.7081 +0.6545 +0.8115 

+1.0000 +0.7638 +0.8355 +0.7857 +0.6461 +0.7616 +0.6277 +0.6196 -+0.7475 

+1.0000 +0.8497 +0.8876 +0.9092 +0.8183 +0.8071 +0.8080 +0.6418 

+1.0000 +0.8742 +0.8421 +0.8053 +0.7893 +0.7990 +0.8736 

+1.0000 +0.8962 +0.7997 +0.8851 +0.8232 +0.7311 

+1.0000 +0.7743 +0.8305 +0.8176 +0.5968 

+1.0000 +0.8148 +0.8835 +0.8032 

+1.0000 +0.9369 +0.7165 

+1.0000 +0.7374 

+1.0000 
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Table 7b. Correlation matrix of first difference frequency signals 
for "two" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.7882 +0.8049 +0.5340 +0.5340 +0.7502 +0.8557 +0.8868 +0.9400 +0.6671 

+1.0000 +0.7101 +0.7897 +0.6969 +0.8552 +0.9002 +0.9362 +0.6493 +0.7840 

+1.0000 +0.4161 +0.8285 +0.4352 +0.6115 +0.8266 +0.8581 +0.3947 

+1.0000 +0.6289 +0.6402 +0.6469 +0.6142 +0.3623 +0.4937 

+1.0000 +0.2681 +0.4349 +0.6424 +0.5712 +0.1703 

+1.0000 +0.9440 +0.8449 +0.5174 +0.9508 

+1.0000 +0.9023 +0.6694 +0.8800 

+1.0000 +0.7851 +0.8243 

+1.0000 +0.4567 

+1.0000 
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Table 7c. Correlation matrix of first difference frequency signal 
for "three" as spoken by ten men and women. 

Schauer 
P. 

Rickey Casson McConnell Rove Anderson Skola Rueter Magee Anderson 

+1.0000 +0. .4859 +0 .5097 +0 .1078 +0 .5467 +0.4649 +0.7210 +0.5003 +0.7984 +0.4109 

+1. ,0000 +0 .6505 +0 .2974 +0 .0937 +0.3252 +0.0673 +0.1225 +0.7110 +0.3017 

+1 .0000 +0 .2748 +0 .5334 +0.3725 +0.4611 +0.4751 +0.5528 +0.2307 

+1 .0000 +0 .1293 +0.4990 +0.1913 +0.1267 +0.3825 +0.4195 

+1 .0000 +0.2136 +0.6863 +0.9307 +0.3262 +0.1996 

+1.0000 +0.3227 +0.1401 +0.6155 +0.3957 

+1.0000 +0.6951 +0.5153 +0.3285 

+1.0000 +0.3120 +0.2175 

+1.0000 +0.4107 

+1.0000 
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Table 7d. Correlation matrix of first difference frequency signal 
for "four" as spoken "by ten men and women. 

Schauer 
P. 

Rickey Casson McConnell Rove Anderson Skola Rueter Magee Anderson 

+1.0000 +0.0504 +0.6563 +0.2036 -0.0400 +0.4973 +0.5184 +0.1723 -K).7131 +0.0363 

+1.0000 +0.4513 +0.5559 +0.9193 +0.2101 +0.7998 +0.8760 +0.2540 +0.5298 

+1.0000 +0.2717 +0.3744 +0.4584 +0.7596 +0.7038 +0.3671 +0.1251 

+1.0000 +0.4813 +0.5946 +0.4842 +0.3565 +0.5128 +0.4480 

+1.0000 +0.1621 +0.7117 +0.8404 +0.2485 +0.5704 

+1.0000 +0.3937 +0.1838 +0.4695 +0.3288 

+1.0000 +0.8664 +0.4447 +0.3186 

+1.0000 +0.1555 +0.3840 

+1.0000 +0.5137 

+1.0000 
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Table 7e. Correlation matrix of first difference frequency signal 
for "five11 as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0 .4349 +0 .6960 +0 .0464 40 .1604 +0.3931 +0.0539 +0.3317 +0.3671 +0.2581 

+1. .0000 +0 .8724 +0 .2567 +0 .2529 +0.4121 +0.5050 +0.6143 +0.7813 +0.3662 

+1 .0000 +0 .1692 +0 .2061 +0.4232 +0.3931 +0.4883 +0.7145 +0.3040 

+1 .0000 40 .5942 40.6737 +0.7737 +0.7455 +0.6488 40.4468 

+1 .0000 +0.6356 +0.6863 +0.6176 +0.6348 +0.6543 

+1.0000 +0.6851 +0.7316 +0.6870 +0.4217 

+1.0000 +0.7615 +0.7661 +0.5371 

+1.0000 40.8185 +0.5602 

+1.0000 40.5586 

+1.0000 
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Table 7f. Correlation matrix of first difference frequency signal 
for "six" as spoken by ten men and women. 

P. 
Schauer Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.7174 +0.8629 +0.7195 +0.8296 +0.6731 +0.7031 +0.7158 +0.7216 +0.7496 

+1.0000 +0.6621 +0.7378 +0.8228 +0.8466 +0.6365 +0.8544 +0.6990 +0.5640 

+1.0000 +0.6916 +0.7205 +0.5832 +0.7120 +0.6593 +0.6707 +0.6912 

+1.0000 +0.8680 +0.6980 +0.8840 +0.8139 +0.8327 +0.5850 

+1.0000 +0.8126 +0.8059 +0.9153 +0.8952 +0.5921 

+1.0000 +0.6130 +0.8337 +0.7450 +0.3611 

+1.0000 +0.7617 +0.8879 +0.6215 

+1.0000 +0.8703 +0.4881 

+1.0000 +0.5384 

+1.0000 
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Table 7g. Correlation matrix of first difference frequency signal 
for "seven" as spoken by ten -men and women. 

Schauer 
P. 

Rickey Casson McConnell Rove Anderson Skola Rueter Magee Anderson 

+1.0000 +0.5550 +0.8507 +0.6862 +0.6050 +0.6004 +0.8554 +0.8347 +0.9478 +0.9630 

+1.0000 +0.5211 +0.6208 +0.9648 +0.9451 +0.4491 +0.8338 +0.5943 +0.5367 

+1.0000 +0.5463 +0.5611 +0.5080 +0.9536 +0.6966 +0.8424 +0.9364 

+1.0000 +0.6658 +0.6623 +0.5733 +0.6605 +0.6922 +0.6213 

+1.0000 +0.9704 +0.4835 +0.8053 +0.6162 +0.5764 

+1.0000 +0.4515 +0.7946 +0.5840 +0.5402 

+1.0000 +0.6352 +0.7943 +0.9192 

+1.0000 +0.8882 +0.8033 

+1.0000 +0.9494 

+1.0000 
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Table 7h. Correlation matrix of first difference frequency signal 
for "eight" as spoken by ten men and women. 

Schauer 
P. 

Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.3697 +0.1153 +0.3911 +0.4198 +0.7255 +0.4356 +0.2748 +0.3233 +0.7250 

+1.0000 +0.1417 +0.5928 +0.6162 +0.6408 +0.6390 +0.6652 +0.5808 +0.1232 

+1.0000 +0.7322 -0.0262 +0.1578 -0.1172 +0.1284 +0.0468 +0.0386 

+1.0000 +0.3142 +0.5490 +0.2360 +0.5392 +0.1761 +0.2120 

+1.0000 +0.6201 +0.9186 +0.2177 +0.6905 +0.5580 

+1.0000 +0.6220 +0.5422 +0.4788 +0.4821 

+1.0000 +0.1897 +0.8142 +0.4499 

+1.0000 +0.0682 -0.0087 

+1.0000 +0.2021 

+1.0000 
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Table 71. Correlation matrix of first difference frequency signal 
for "nine" as spoken by ten men and women. 

Schauer 
P. 

Rickey Casson McConnell Rowe Anderson Skola Rueter Magee Anderson 

+1.0000 +0.7222 +0.5473 +0.5900 +0.5413 +0.5911 +0.7627 +0.7086 +0.7577 +0.6627 

+1.0000 +0.8677 +0.9281 +0.8173 +0.8097 +0.7278 +0.9044 +0.9054 -+0.5454 

+1.0000 +0.8725 +0.7234 +0.8657 +0.7906 40.8122 +0.7438 +0.4907 

+1.0000 +0.7689 +0.7921 +0.6804 +0.9120 +0.8373 +0.5382 

+1.0000 +0.6364 +0.6724 +0.6786 +0.7189 +0.4478 

+1.0000 +0.7509 +0.6779 +0.7383 +0.3047 

+1.0000 +0.6935 +0.6635 +0.5760 

+1.0000 +0.8044 +0.6459 

+1.0000 +0.5768 

+1.0000 
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Table 7j. Correlation matrix of first difference frequency signal 
for "zero" as spoken by ten men and women. 

Schauer Rickey Casson McConnell Rowe 
P. 
Anderson Skola Rueter Magee Anderson 

+1.0000 +0, .5315 +0, .3782 +0, .3606 +0, .5277 +0, .5364 +0, .8034 +0, ,8612 +0, .7504 -0, .0848 

+1, .0000 +0, .5182 +0, .5224 +0, .3316 +0, .4556 +0, .3118 +0, .5940 +0, .4623 +0, .0468 

+1, .0000 +0, .7472 +0, .8142 +0, .7289 +0, .5905 +0. .6417 +0, .7373 +0, .6157 

+1. .0000 +0, .8369 +0, ,6863 +0, .6305 +0, .7177 +0, .6360 +0, .7748 

+1. .0000 +0, .8077 +0, .8735 +0, .8149 +0, .8273 +0, .7043 

+1. .0000 +0, .7907 +0, .7339 +0, .8991 +0, .3662 

+1.0000 +0.9000 +0.8961 +0.3656 

+1.0000 +0.8788 +0.3388 

+1.0000 +0.3436 

+1.0000 
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ten digits spoken "by ten men and women are given. As was expected, 

taking the first differences accentuated the irregularities of the 

signals, and consequently those digits which were not well correlated 

for the ten speakers on the basis of the frequency signal are even 

more poorly correlated. On the basis of the first differences, it 

would appear that the individual differences of speakers are too 

accentuated to permit recognition based on the first difference frequen­

cy characteristics unless the frequency characteristics themselves are 

highly correlated. 

In a vowel study program conducted at the Bell Telephone Labora­

tories by Peterson and Barney, (42), it was found that when observers 

disagreed with speakers on the classification of a vowel sound, the two 

classifications were nearly always in adjacent position of the vowel 

loop as plotted by the investigators. The test involved studying the 

ability of listeners to classify ten vowel sounds when these sounds 

appeared in words with the same initial and final consonants. In this 

case the consonants selected were "h" and "d". For example, results 

indicated that the probability of mistaking "hid" for 'head", and 

vice versa, was higher than mistaking "heed" for "hide". The results 

of this experiment were duplicated using correlation studies of the 

derived frequency and first difference frequency signals for the same 

ten words. The frequency and amplitude characteristics of the ten 

words are given in Figure 8. 

If the words were plotted around the vowel path, they would be 

arranged in the following order : "heed, hid, head, had, hod, hawed, 
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•who'd", with "heard, hud and hood" inside the enclosed path. The 

correlation matrices of the frequency, amplitude, and first difference 

frequency signals for the ten selected words are given in Tables 8a-8c. 

It is apparent that nearly all of the signals appear to be highly corre­

lated as evidenced by the frequency and amplitude matrices. Certainly 

little information concerning the word is evident in these two signals 

on the basis of this analysis. However, the first difference frequency 

matrix, as shown in Table 8c, indicates that these sounds are not well 

correlated using the first difference signals. In fact, the highest 

cross correlation coefficients occurred for words such as "head" and 

"hid" having vowel sounds adjacent on the vowel loop or between those 

words inside the loop and those on the loop. No general statement was 

made to cover those sounds inside the loop in the original report. 

Essentially the same results as reported by Peterson and Barney (42) 

were obtained using the correlation studies on the derived speech 

signals. 

In the investigation reported to this point, the derived frequency 

and amplitude signals were obtained by using the full speech spectrum 

extending from about 100 to 10,000 cycles per second. Figures 9, 10, 

and 11 show the results of using RC filters to determine just how much 

of the spectrum was necessary to sustain the same information content. 

To obtain the signals of Figure 9, a high pass RC filter was inserted 

at the input to the phase inverter of the audio amplifier and the value 

of C adjusted to obtain the various cutoff frequencies. The loading on 

the previous stage was not changed appreciably by the addition of this 
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Figure 8. Frequency and amplitude characteristics of 
words used in vowel study program. 



www.manaraa.com

85 

FREQ 

AMP 

HEED HID HEAD HAD HOD 

FREQ 

AMP 
HAWED HOOD WHO'D HUD HEARD 



www.manaraa.com

Table 8a. Correlation matrix of the frequency signal for the 
ten word vowel study. 

heed hid head had hod hawed hood who'd hud heard 

+1.0000 +0.7170 +0.6055 +0.7828 +0.7604 +0.8592 +0.6067 +0.7583 +0.7600 +0.9532 

+1.0000 +0.9432 +0.9566 +0.8811 +0.9115 +0.9603 +0.8851 +0.7186 +0.8632 

+1.0000 +0.9404 +0.8974 +0.8652 +0.9700 +0.8580 +0.7325 +0.7716 

+1.0000 +G.9241 +0.9464 +0.9247 +0.8790 +0.8127 +0.9118 

+1.0000 +0.9492 +0.8682 +0.8906 +0.9265 +0.8685 

+1.0000 +0.8544 +0.9201 +0.8913 +0.9569 

+1.0000 +0.8353 +0.6588 +0.7629 

+1.0000 +0.8089 +0.8813 

+1.0000 +0.8344 

+1.0000 
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Table 8b. Correlation matrix of the amplitude signal for the ten 
word vowel study. 

heed hid head had hod hawed hood who'd hud heard 

+1.0000 +0.7283 +0.6375 +0.7868 +0.9829 +0.9151 +0.5633 +0.8820 +0.9747 +0.9116 

+1.0000 +0.9676 +0.9681 +0.8114 +0.9278 +0.9493 +0.9514 +0.6290 +0.9242 

+1.0000 +0.9598 +0.7250 +0.8644 +0.9844 +0.8940 +0.5331 +0.8768 

+1.0000 +0.8494 +0.9567 +0.9281 +0.9654 +0.6926 +0.9640 

+1.0000 +0.9533 +0.6570 +0.9328 +0.9494 +0.9476 

+1.0000 +0.8189 +0.9921 +0,8481 +0.9936 

+1.0000 +0.8586 +0.4396 +0.8234 

+1.0000 +0.8051 +0.9870 

+1.0000 +0.8475 

+1.0000 
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Table 8c. Correlation matrix of the first difference frequency 
signal for the ten vord vowel study. 

heed hid head had hod hawed hood who'd hud heard 

+1.0000 +0.2067 +0.3004 +0.5227 +0.2399 +0.4868 +0.2401 +0.4587 +0.2950 +0.7965 

+1.0000 +0.7860 +0.5961 +0.4389 +0.5126 +0.8072 +0.6474 +0.1138 +0.4670 

+1.0000 +0.6621 40.4480 +0.3849 +0.7471 +0.6730 +0.1716 +0.4682 

+1.0000 +0.4177 +0.4930 +0.5478 +0.6693 +0.2041 +0.7574 

+1.0000 +0.6154 +0.3909 +0.6345 +0.7108 +0.3893 

+1.0000 +0.4182 +0.7223 +0.6228 +0.6927 

+1.0000 +0.6058 -0.0091 +0.3976 

+1.0000 +0.4787 +0.6106 

+1.0000 40.3136 

+1.0000 
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Figure 9. Effects of a high pass filter on frequency characteristic. 
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Figure 10. Effects of single stage low pass filter on frequency characteristic. 
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Figure 11. Effects of two stage low pass filter with additional amplification on 
frequency characteristic. 
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filter network. It is clear that only when the nominal cutoff frequency 

is at the very upper end of the speech spectrum, are the dominant 

features of the frequency signal less distinct and the character of the 

signal lost. 

The effects of a low pass RC filter, placed at the input of the 

phase inverter of the audio amplifier, are graphically shown in Figure 

10. Values of R and C were selected to minimize the loading effects 

of the filter on the preceding amplifier stage. From these plots it is 

evident that the high frequency end of the spectrum is very important 

in forming the frequency characteristics of the digits. In Figure 11 

additional frequency characteristics are shown. In this case a two 

stage low pass filter is used to give an attenuation of 40 db per 

decade. Because of the insertion loss, the amplifier stage of a Hewlett-

Packard Vacuum tube voltmeter, model 400-D, was inserted ahead of the 

phase inverter of the audio amplifier. These plots also indicate 

that the high frequency end of the speech spectrum contains a large part 

of the information structure. 

The simple RC filter stages are not the most effective filters 

that might be used to determine the spectral range necessary for 

reasonably distinct output signals. The attenuation per stage of the 

simple filter is only 20 db per decade. Consequently there is no 

assurance that the lower frequencies which contain the highest energy 

density will not contribute to the output signal even though they. 

may be well below the cutoff frequency. The insertion loss of the filter 

is a second problem, particularly in the case of the low pass filter. 
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When the two-stage RC low pass filter was used, an additional amplifier 

section was necessary to assure that the input signals in the pass band 

were large enough to switch the cores. 

A commercial filter, a Krohn-hite Instrument Company, ultra-low 

frequency, band pass filter, model 330-A, was used to overcome the 

attenuation-loss problem. The one drawback to this filter was the 

upper frequency limit of 2000 cycles per second. This filter has an 

attenuation of 70 db outside the selected band pass, and zero insertion 

loss. Characteristics obtained with this filter inserted in the input 

of the phase inverter of the audio amplifier are shown in Figure 12. 

For all runs the low end of the pass band was set at 0.02 cycles per 

second with the high end as indicated in the drawing. It is apparent 

that with the full pass band of the filter the distinctive character­

istics of the frequency signals just begin to emerge from the broad 

base of the signals. It would appear from Figure 12 that insufficient 

information is present in the pass band from 0.02 - 2000 cycles per 

second to recognize individual signals. This is verified by the 

correlation studies of the frequency and amplitude signals shown in 

Figure 13. It is evident from the correlation matrix in Table 9a. that 

only the signals of "six" and "eight" can be separated from the entire 

group with any reasonable success. The rest of the signals are all 

essentially highly correlated. As shown in Table 9b, the first 

difference signals have lower cross correlation coefficients, although 

it would be difficult to distinguish between a "three", "five", or "nine". 

The significance of frequency changes in the speech signal which 



www.manaraa.com

Figure 12. Effects of band pass filter on frequency characteristics. 
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Figure 13. Frequency and amplitude characteristics of the 
ten digits using a pass "band of 0.02 - 2000 
cycles per second. 
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Table 9a. Correlation matrix of frequency signals of the 
ten digits using a 0.02 - 2,000 cycles per 
second band pass filter. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.7513 +0.9501 +0.7912 +0.8997 +0.2937 +0.8981 +0.5295 +0.9221 +0.9158 

+1.0000 +0.7519 +0.9298 +0.8614 +0.2836 +0.8839 +0.8588 +0.6964 +0.6397 

+1.0000 +0.8677 +0.9591 +0.2661 +0.8896 +0.4703 +0.9780 +0.9295 
g 

+1.0000 +0.9627 +0.2517 +0.9237 +0.7354 +0.8401 +0.7432 ^ 

+1.0000 +0.2453 +0.9456 +0.6219 +0.9464 +0.8512 

+1.0000 +0.3180 +0.4067 +0.2332 +0.3212 

+1.0000 +0.7453 +0.8563 +0.7865 

+1.0000 +0.4404 +0.3711 

+1.0000 +0.9203 

+1.0000 
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Table 9b. Correlation matrix of first difference frequency signals of 
the ten digits using a 0.02 - 2,000 cycles per second band 
pass filter. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.2937 +0.7185 +0.2870 +0.5162 +0.2456 +0.5352 +0.2267 +0.5885 +0.7207 

+1.0000 +0.3233 +0.5965 +0.5496 +0.2884 +0.1291 +0.4069 +0.2876 +0.3567 

+1.0000 +0.5941 +0.7250 +0.1492 +0.5400 +0.2266 +0.7656 +0.7368 
H o 

+1.0000 +0.8238 +0.2298 +0.5382 +0.5182 +0.6012 +0.4288 1X3 

+1.0000 +0.1462 +0.6474 +0.3807 +0.7824 +0.5415 

+1.0000 +0.3615 +0.4474 -0.1248 +0.0092 

+1.0000 +0.4237 +0.5045 +0.2744 

+1.0000 +0.3154 +0.0736 

+1.0000 +0.6777 

+1.0000 
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Figure 14. Frequency signals for the ten digits with 
clipping on the peaks. 
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Table 10a. Correlation matrix of clipped frequency signals 
for the ten digits. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.3551 +0.5199 +0.6147 +0.5915 +0.2237 +0.7335 +0.5084 +0.9147 +0.6507 

+1.0000 +0.0176 +0.7011 +0.8974 +0.1116 +0.8011 +0.0360 +0.1953 +0.6347 

+1.0000 +0.3542 +0.4166 +0.2516 +0.3123 +0.4865 +0.7975 +0.3221 

+1.0000 +0.7486 +0.3566 +0.9023 +0.2814 +0.5346 +0.9655 

+1.0000 +0.1765 +0.8585 +0.2175 +0.5498 +0.6738 

+1.0000 +0.4073 +0.6634 +0.2111 +0.4554 

+1.0000 +0.3517 +0.5947 +0.9215 

+1.0000 +0.5041 +0.3459 

+1.0000 +0.5469 

+1.0000 
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Table 10b. Correlation matrix of first difference clipped frequency 
signals for the ten digits. 

Digits 

5 6 7 8 9 0 

+1.0000 +0.0580 -0.1189 -0.0729 +0.1180 +0.1640 +0.3331 +0.2566 +0.6736 +0.0382 

+1.0000 -0.0891 +0.1072 +0.8864 +0.1021 +0.4540 -0.0301 -0.0625 -0.0755 

+1.0000 +0.4648 -0.0005 +0.0416 +0.0187 -0.0960 +0.4204 +0.4404 

+1.0000 +0.1687 +0.1300 +0.1705 +0.0932 +0.1593 +0.7827 

+1.0000 +0.0893 +0.5499 -0.0792 +0.0555 -0.0821 

+1.0000 +0.6622 +0.1736 -0.0838 +0.4234 

+1.0000 +0.0729 +0.1460 +0.4172 

+1.0000 -0.0691 +0.1330 

+1.0000 +0.2208 

+1.0000 
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The significance of frequency changes in the speech signal which 

are large compared to the small changes associated with the medium 

frequency range of the speech spectrum was also studied. In this case 

the recorder was adjusted so that clipping occurred on the large peaks 

of the frequency signal. Figure 14 shows the frequency signals of the 

ten digits recorded in this manner. Correlation studies were conducted 

on the derived characteristics, and the results are given in Tables 

10a and 10b. In Table 10a, it is apparent that four basic groups exist. 

Only the digits "six" and "eight" are clearly distinguishable. The 

matrix of Table 10b indicates that even the first differences of "two" 

and "five" are highly correlated. Clipping the signals apparently adds 

little to or detracts from the recognition problem. 

The use of "oh" instead of "zero" was studied to determine its 

effect on the problem of classification of the ten frequency signals. 

Figure 15 contains the characteristics analyzed for the problem. The 

frequency signals were clipped, and "oh" was used in place of "zero" as 

indicated. Correlation studies were conducted on the resulting signals. 

The frequency signal for "oh" ws highly correlated with all signals 

but "six". Even the first differences of "oh", "four", and "seven" are 

highly correlated. Therefore the use of "oh" instead of "zero" only 

compounded the recognition problem. 
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Figure 15. Frequency characteristics with clipping of the 
ten digits "one" through "oh". 
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Table lia. Correlation matrix for clipped frequency signals for 
the ten digits with "zero" replaced by "oh". 

Digits 

5 6 7 8 9 0 

+1.0000 +0.6074 +0.8864 +0.9002 +0.7630 +0.3417 +0.9042 +0.8736 +0.8553 +0.9103 

+1.0000 +0.5411 +0.7024 +0.4185 +0.3864 +0.7668 +0.6525 +0.4776 +0.7426 

+1.0000 +0.8773 +0.9078 +0.2582 +0.8195 +0.7400 +0.9044 +0.8277 

+1.0000 +0.8861 +0.3191 +0.9628 +0.8776 +0.9393 +0.9820 

+1.0000 +0.1826 +0.7757 +0.6819 +0.9710 +0.8103 

+1.0000 +0.3950 +0.5659 +0.2225 +0.3600 

+1.0000 +0.9094 +0.8566 +0.9849 

+1.0000 +0.7808 +0.8987 

+1.0000 +0.8875 

+1.0000 



www.manaraa.com

Table lib. Correlation matrix of first difference clipped frequency 
signals for the ten digits with "zero" replaced by "oh". 

Digits 

5 6 7 8 9 0 

+1.0000 +0.0317 +0.5305 +0.5175 +0.3630 +0.1126 +0.4345 +0.5331 +0.6300 +0.5544 

+1.0000 +0.2375 +0.1048 +0.0185 +0.6773 +0.0636 +0.0463 -0.1305 +0.1474 

+1.0000 +0.2973 +0.5601 +0.2773 +0.2070 +0.2290 +0.3352 +0.2031 

+1.0000 +0.6520 +0.1892 +0.6727 +0.5999 +0.6393 +0.8492 

+1.0000 -0.0077 +0.2150 +0.2150 +0.6900 +0.6091 

+1.0000 +0.4940 +0.4940 -0.0853 +0.2716 

+1.0000 +0.5727 +0.6762 +0.8397 

+1.0000 +0.3779 +0.6304 

+1.0000 +0.7451 

+1.0000 
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RESULTS 

It has "been shown that a pair of signals can "be derived from 

speech which are indicative of the frequency and amplitude components 

varying at the rate of 15 cycles per second or less. These signals 

were obtained by using a rectifier and a filter for amplitude, and 

a core switch, rectifier and filter for frequency. The recorder was 

only necessary in this investigation because suitable analog to digital 

conversion equipment was not available in the laboratory. 

The amplitude signal, analyzed by using correlation techniques, 

was found to contain essentially no information concerning identification 

of the sound from which it was derived. However, the signal would be 

very useful in an automated system to indicate when an input had been 

presented to the system. The sampling period could also be controlled 

in such a system by the duration of the amplitude signal. 

It has been shown that the frequency signal does have some infor­

mation structure associated with it. A correlation study of a very 

simple vocabulary consisting of the ten digits revealed normally four 

classifications among these ten signals, indicating insufficient infor­

mation structure in the frequency signal to uniquely identify any 

arbitrary input. 

However, it was found that the normalized frequency signal for 

a given digit was essentially independent of pitch and consequently 

insensitive to signal source with respect to the pitch variable. The 

results of correlation studies of ten speakers with the ten digit 
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vocabulary have shown that it is impossible to distinguish between male 

and female speakers on the basis of the recorded signals alone. The 

variations in the individual frequency signals, when they are large 

enough to be important, are caused primarily by the enunciation differ­

ences of the speakers. It has been shown in the reported correlation 

studies that enunciation differences are most likely to occur for the 

fricative sounds. Because the energy is distributed over a wide range 

of frequencies for a fricative sound, the manner in •which the sound is 

uttered may cause considerable differences in the frequencies present 

in the sound. It is apparent from the signals themselves that peaks 

in the characteristics, particularly those resulting from initial or 

final fricative consonants, may be smoothed or sometimes even missing 

depending upon the enunciation of the speaker. Therefore, training of 

individuals could practically eliminate this source of signal variation. 

Correlation studies of the first differences of the frequency 

signals have shown that generally sufficient information is present in 

the difference signals to uniquely identify the individual digits of the 

vocabulary. It was also shown that the first difference signals for the 

same digit for the ten speakers were less highly correlated than the 

frequency signals themselves. This would be anticipated since the 

difference signal should accentuate any individual characteristics in 

the frequency signals. However, it was shown that the first difference 

frequency signals could be used to essentially duplicate the results 

of a vowel study test conducted and reported by members of the Bell 

Telephone Laboratories who used a completely different approach. 
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An investigation of the range of input frequencies necessary to 

retain a useable information structure in the signals revealed that 

the high end of the normal speech spectrum appeared to contribute most 

to the information structure. As the high frequency components of the 

speech were suppressed, the derived signals lost their distinctiveness 

and information content. 
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CONCLUSIONS 

It has been shown that the amplitude and frequency signals 

derived to characterize speech do have sufficient information structure 

to be useful. It would appear that this technique of speech character­

ization would be valuable in areas of speech correction and therapy. 

A visual display is available immediately to show the effects of the 

enunciation of the speaker. Such a display could perhaps make evalu­

ation of the speech problem and progress towards its solution much 

easier. 

As indicated earlier the problems of speech transmission and 

recognition have been studied for many years. The method of character­

ization presented here could prove valuable in such areas. From an 

information theory viewpoint the transmission of normal speech is very 

wasteful of bandwidth. A bandwidth of about 7,000 cycles per second 

is a reasonable figure to completely identify unmodified speech. This 

bandwidth can be reduced only at the expense of the information concern­

ing the individual source. 

The transmission of the derived signal is one method which might 

be used to reduce this bandwidth requirement. The signal could be 

transmitted with a bandwidth of 20 cycles per second. This is a reduc­

tion in bandwidth by a factor of 350. The reduction in bandwidth alone 

would suggest further investigations into the problems of regenerating 

the sound from the transmitted derived signals. It would appear that 

it is possible to obtain a completely automated system, the output of 
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"which would be a continuous signal or a sampled digital representa­

tion of the derived frequency signal for any given input. 

The problem of speech recognition is closely akin to that of 

speech transmission. Usually, however, it is desirable to automate 

the recognition or identification process as well as the transmission 

process. This implies that sufficient information structure must be 

contained in the analyzed signals to make recognition possible and that 

the form of the structure in the signals is known. Both of these condi­

tions pose problems that must be investigated before a recognition 

system can be conceived. From the studies reported here a system using 

the frequency and first difference frequency signals would appear feasible. 

The frequency signal itself could be used to classify the unknown into 

one of several group patterns -which have been indicated by these studies. 

The identification within the group would be performed on the basis of 

the first difference signal. Some correlation technique which compared 

the unknown input with the stored representations of the vocabulary 

would be used to perform both of these functions. Properly selected 

representations would make the problem of reliable recognition easier 

to solve. Further studies to determine what representations are most 

effective are necessary. Training of the speakers, themselves, might 

also be a partial answer to reliable recognition. The rate at which 

the speech signals need be sampled is so low that the correlation could 

be done during the sampling period so that an output would be available 

almost immediately. The speed of the system should be such that normal 

speech rates are possible. The ability to perform automatic speech 
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recognition reliably has implications in the areas of digital data 

systems and automatic control systems as well as information trans­

mission. Additional efforts on the recognition problem, possibly 

extending the ideas presented herein, appear to be warranted. 
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